Prediction of Suspect Location Based on Spatiotemporal Semantics
نویسندگان
چکیده
The prediction of suspect location enables proactive experiences for crime investigations and offers essential intelligence for crime prevention. However, existing studies have failed to capture the complex social location transition patterns of suspects and lack the capacity to address the issue of data sparsity. This paper proposes a novel location prediction model called CMoB (Crime Multi-order Bayes model) based on the spatiotemporal semantics to enhance the prediction performance. In particular, the model groups suspects with similar spatiotemporal semantics as one target suspect. Then, their mobility data are applied to estimate Markov transition probabilities of unobserved locations based on a KDE (kernel density estimating) smoothing method. Finally, by integrating the total transition probabilities, which are derived from the multi-order property of the Markov transition matrix, into a Bayesian-based formula, it is able to realize multi-step location prediction for the individual suspect. Experiments with the mobility dataset covering 210 suspects and their 18,754 location records from January to June 2012 in Wuhan City show that the proposed CMoB model significantly outperforms state-of-the-art algorithms for suspect location prediction in the context of data sparsity.
منابع مشابه
Groundwater Level Forecasting Using Wavelet and Kriging
In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...
متن کاملFetal gender prediction based on placental location throughout first trimester transabdominal ultrasound
Background: Awareness of fetal gender at primary stages of pregnancy is very important. Fetal sex determination can reveal pressing information regarding fetal health. One of the methods of determining gender in the first trimester is according to the location of placenta. . This study investigated the accuracy and sensitivity of this method with trans-abdominal ultrasound in determining the se...
متن کاملNext Place Prediction Based on Spatiotemporal Pattern Mining of Mobile Device Logs
Due to the recent explosive growth of location-aware services based on mobile devices, predicting the next places of a user is of increasing importance to enable proactive information services. In this paper, we introduce a data-driven framework that aims to predict the user's next places using his/her past visiting patterns analyzed from mobile device logs. Specifically, the notion of the spat...
متن کاملLexical Semantics and Selection of TAM in Bantu Languages: A Case of Semantic Classification of Kiswahili Verbs
The existing literature on Bantu verbal semantics demonstrated that inherent semantic content of verbs pairs directly with the selection of tense, aspect and modality formatives in Bantu languages like Chasu, Lucazi, Lusamia, and Shiyeyi. Thus, the gist of this paper is the articulation of semantic classification of verbs in Kiswahili based on the selection of TAM types. This is because the sem...
متن کاملA comparison between the Kazerun (Iran) and the North Anatolian (Turkey) fault systems in fault interaction and seismicity migration based on the spatiotemporal analysis of earthquakes
The Kazerun Fault System (KFS) is a right-lateral strike slip fault system in the middle part of the Zagros seismogenic zone in Iran. Historical and instrumental earthquake data catalogs of this fault system show good evidence of fault interactions and seismic migrations. This study provides evidence for the migration of seismicity in the middle part of the Zagros region along the segments of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017